Aquatic Invasive Species in South Dakota & Watercraft Inspection and Decontamination
Mission Statement

Our mission is to provide sustainable outdoor recreational opportunities through responsible management of our state's parks, fisheries and wildlife by fostering partnerships, cultivating stewardship and safely connecting people with the outdoors.

Vision Statement

Our vision is to conserve our state's outdoor heritage to enhance the quality of life for current and future generations.
What are AIS?
Aquatic Invasive Species

- Not native to South Dakota
- Negative impact to the ecosystem
 - Foodweb alterations
 - Competition with native species
- OR
- Negative impact to human use
 - Prevent fishing and recreation
 - Reduced efficiency of water intakes
 - Financial cost to control
South Dakota AIS List

<table>
<thead>
<tr>
<th>Fish</th>
<th>Plants</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bighead Carp</td>
<td>Brittle naiad</td>
<td>Asian clam</td>
</tr>
<tr>
<td>Common Carp</td>
<td>Common reed (Phragmites)</td>
<td>New Zealand mudsnail</td>
</tr>
<tr>
<td>European Rudd</td>
<td>Curly pondweed</td>
<td>Red rimmed melania</td>
</tr>
<tr>
<td>Grass Carp</td>
<td>Didymo (rock snot)</td>
<td>Red swamp crayfish</td>
</tr>
<tr>
<td>Silver Carp</td>
<td>Eurasian water-milfoil</td>
<td>Rusty crayfish</td>
</tr>
<tr>
<td>Western Mosquitofish</td>
<td>Flowering rush</td>
<td>Zebra mussel</td>
</tr>
<tr>
<td>Black carp</td>
<td>Purple loosestrife</td>
<td>Quagga mussel</td>
</tr>
<tr>
<td>Blotched Snakehead</td>
<td>Starry stonewort</td>
<td>Spiny waterflea</td>
</tr>
<tr>
<td>Bull's-eye Snakehead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant Snakehead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Snakehead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round Goby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Perch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Carp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bigheaded Carp

Silver Carp
- Maximum Size
 - 40 in
 - 60 lbs.
- Sexual maturity in 2 years
- Up to 3.7 million eggs
- Multiple spawns/year
- Consume 40% bodyweight daily, primarily phytoplankton

Bighead Carp
- Maximum Size
 - 55 in
 - 90 lbs.
- Sexual maturity in 2 years
- Up to 1.9 million eggs
- Multiple spawns/year
- Consume 40% bodyweight daily, primarily phytoplankton
Which is a bigheaded carp?
Which is an bigheaded carp?

Golden Shiner

Goldeye

Bighead Carp

Gizzard Shad
Silver and Bighead Carp

• Introduced in Arkansas in 1973
 • For water quality improvement in aquaculture ponds
 • Escaped into natural waters by 1980\(^3\)

\(^3\)Freeze and Henderson (1982)
Bigheaded Carp Range

Legend

East River Basins
- Big Sioux
- James
- Minnesota
- Vermillion

- Barrier

\[4\text{Hayer (2014)}\]
Bigheaded Carp Range

Legend
- Barrier

East River Basins
- Big Sioux
- James
- Minnesota
- Vermillion

[Image of a map showing the range of the Bigheaded Carp in South Dakota, with cities such as Pierre, Huron, Mitchell, Watertown, Brookings, Sioux Falls, and Yankton marked.]
Bigheaded Carp Range

Legend

- Barrier

East River Basins

- Big Sioux
- James
- Minnesota
- Vermillion

Map showing the distribution of Bigheaded Carp in South Dakota with labeled cities and river basins.
Potential Impacts

• Potential to cause a decline in plankton populations\(^5\)
• Compete with native fish for plankton
 • Force changes in trophic position\(^4,6\)
• Shift production to benthic pathway\(^7\)
• Collision with boaters
 • Silver Carp can jump vertically 5 ft.

\(^5\) Laird and Page (1996)
\(^6\) Freedman et al. (2012)
\(^7\) Collins and Wahl (2017)
Bait Closure Zone
Common Carp

- Uproot vegetation
- Increases turbidity by stirring up sediments
- Change water quality and waterbody state
- Can shift community composition of fish and invertebrates
Grass Carp

• Alter macrophyte abundance and composition similar to Common Carp
• Consume 61 lbs of macrophytes/lb of body weight annually
• $61 \times 62.5 = 3,812.5$ lbs/yr!
European Rudd

- Hybridize with Golden Shiner
 - Could alter spawning behavior and recruitment success
- Omnivorous
- Can alter macrophyte communities similar to invasive carp species
Western Mosquitofish

- Aggressive competitors negatively affect native species
 - Competition
 - Predation
- Have locally extirpated federally listed T&E species
- Widely stocked to control mosquitoes, not particularly effective
- Established statewide
Invasive Plants
Invasive Plants

- Grow extremely fast
- Form dense mats
 - Out-compete native plants
 - Canopy decreases light penetration
 - Inhibit growth of phytoplankton
- Reduce local diversity
- Tangle in propellers
- Makes water recreation difficult
- Decrease dissolved oxygen during decay
- Easily spread by hitchhiking on boat trailers
Curly-leaf pondweed

• Spread by fragmentation and turions
 • Multiple infested waters in SD
 • Angostura, Big Stone, Canyon Lake, Herrick Lake, Lake Alice, Lake Mitchell, Lake Roosevelt, Lake Traverse, McCook Lake, MO River, Nelson Slough, Rapid Creek, Roy Lake, Sheridan, Stockade, Yankton

Source: Vic Ramey, UFL Center for Aquatic and Invasive Plants
Eurasian watermilfoil

• Can spread by seeds or stem fragmentation
 • Lake Oahe
 • Lake Sharpe
 • Lewis and Clark Lake
Brittle naiad (waternymph)

- Spreads by seeds or stem fragmentation
 - McCook Lake
 - Lewis and Clark
Didymo (Rock snot)

• A species of diatom (algae)
 • Castle Creek
 • Rapid Creek
• May reduce or alter macroinvertebrates
• May spread on equipment (felt-soled boots, waders, bags)
Wetland Ornamentals

- Outcompete native plants
- Grow extremely dense and tall
- Displace wildlife
- Prevent access
- Distributions not well-documented in SD

Purple Loosestrife
- Widespread
- Missouri River and Rapid Creek

Phragmites (Common Reed)
- Widespread
- Similar to native variant; more aggressive
- Missouri River

Flowering Rush
- Limited distribution
- Lakes Faulkton and Louise
Invasive Invertebrates
Physical Characteristics

Zebra Mussel

• Shape:
 • Triangular or “D” shaped
 • Sharply pointed hinge

• Color
 • Alternating dark (green to brown) and light (white to yellow) bands

• Size
 • 3-5 cm

Quagga Mussel

• Shape:
 • Fan-Shaped
 • Rounded hinge

• Color:
 • Brown to white, stripes may or may not be present

• Size:
 • 3-5 cm
Zebra Mussel Introduction

• Introduction to the United States in 1980’s
 • First found in Lake St. Clair near Detroit, MI
• Spread throughout Mississippi River drainage
 • Missouri, Arkansas, Tennessee, and Ohio Rivers

Figure 1 – Ballast water cycle.
2010

Source: U.S. Geological Survey, Nonindigenous Aquatic Species Database, April 2011
Timeline of Zebra Mussels in SD

- 2014 – Lewis and Clark Lake
- 2015 – Missouri River below Gavins Point Dam
- 2015 – McCook Lake
- 2018 – Lake Yankton
- 2019 – Lakes Sharpe and Francis Case
Physical Characteristics

• Byssal threads
 • Allow Dreissenid mussels to attach to hard surfaces
 • Quagga mussels can also attach to soft surfaces such as mud
 • No native mussel species have byssal threads
How do they spread?

- Larval stage called veligers
 - Microscopic
 - Transported in boats holding water
 - Ballast tanks (wakeboard boats)
 - Livewells
 - Bait buckets
 - Can survive 2 weeks without food
How do they spread?

- Larval stage called veligers
 - Microscopic
 - Transported in boats holding water
 - Ballast tanks (wakeboard boats)
 - Livewells
 - Bait buckets
 - Can survive 2 weeks without food

- Adults attach to hard surfaces
 - Boats, pontoon, etc.
 - Aquatic vegetation
Dreissenid Biology

• Females produce up to 1 million egg/year
 • Spawning begins at 50-55°F and maxes at 62.6°F
 • Adult densities can reach ≈700k/m²

• Adults can filter ≈1L of water/day
 • Mille Lacs Lake = filtered every 1-3 days
 • Lake Erie = 100% increase in water clarity

• Resilient to environmental stress
 • Temperature: < 0°C to 32°C
 • Avoid chemical treatment by closing shells
 • Veligers can survive up to 30 days in damp environments
Foodweb Alteration
Foodweb Alteration
Effects on Aquatic Community

• Decline in native mussels14
• Competition for zooplankton
 • Larval (Bluegill)15
 • Juvenile (Striped Bass)16
 • Pelagic species (herrings)16
• Shift nutrients to the bottom
 • Lower plankton/zooplankton17
 • More benthic invertebrates (i.e. leeches, freshwater shrimp)
• Increased clarity = more vegetation, higher temperature18
 • Changes fish distribution and feeding habits
 • Can make angling more challenging
• Conflicting effects on fish populations
 • Increased juvenile Yellow Perch growth19

14Hart et al. (2001) \hspace{1cm} 15Raikow (2004) \hspace{1cm} 16Strayer et al. (2004) \hspace{1cm} 17MacIsaac et al. (1995) \hspace{1cm} 18Skubinna et al. (1995) \hspace{1cm} 19Mayer et al. (2000)
Human Impact of Zebra Mussels

- Costly Mitigation
 - >$1 billion annually in United States
 - Water treatment plants, irrigation, boat/dock maintenance, etc.
- Eradication is generally infeasible
 - Infestations are not typically discovered until the population is well-established
 - MN DNR Zequanox® study at Christmas Lake
 - $6800 to treat 7500 ft³ (unsuccessful)
 - Extrapolated to Lewis & Clark Lake-$23.6 Billion
- Prefer green algae, increasing blue-green algae blooms
- Foul taste and smell of drinking water
- Concentrate heavy metals
- Sharp shells are dangerous to swimmers
Crayfish

• Rusty Crayfish
 • Maximum length of 11 cm
 • Large claws with black banded tip
 • Dark “rust-colored” spot on side
 • Compete with native crayfish
 • Can reduce macrophytes and increase turbidity

• Red Swamp Crayfish
 • Maximum length of 12 cm
 • Dark red body with bright red bumps on body, claws, and first leg
 • Compete with native crayfish

Tennessee Wildlife Resources Agency
Michigan.gov
Additional AIS Invertebrates

- Asian Clam
 - Biofouling
 - Compete with natives

- Red-Rimmed Melania
 - Host for several parasites
 - Compete with natives
 - Consume fish eggs
New Zealand Mudsnaill

- Densities up to 300k/m²
- Potential to outcompete native species
- Alter productivity and become a biofouler
Snakeheads

- Size Variability
 - Blotched = 13 inches
 - Bullseye = 4 feet
- Native to East and Southeast Asia
- Introduced as food fish and aquarium pets
- Capable of breathing atmospheric oxygen
- Voracious predators
 - Some species are known to attack humans
Snakeheads

Blotched Snakehead

Giant Snakehead

Bullseye Snakehead

Northern Snakehead
Black Carp

- Max Size = 7.2 ft; >150 lbs\(^1\)
- Prodigious, large river spawner
- Molluscivore\(^{20}\)
 - Prey on native snails and mussels
- Imported as food fish and biocontrol in aquaculture ponds (snails)

\(^{20}\)Nico et al. (2005)
Round Goby

- Large declines in native fish
- High predation on SMB eggs = seasonal closures of Lake Erie
- Concerns with intentional stocking
White Perch

- Spread to neighboring states (Nebraska, Iowa)
- Prey heavily on WAE, WHB eggs
- Competition
- Hybridization
- May be responsible for WAE collapse in Bay of Quinte
Quagga Mussel

- Established throughout the Great Lakes but hasn’t expanded as rapidly as Zebra Mussels
 - Introduced via ballast water discharge in late 1980s
- Similar economic and ecological impacts to zebra mussels
 - Can inhabit deeper water than zebra mussels
Starry Stonewort

- Spread through fragmentation and by mammals and bird transport
- Dense mats inhibit growth of other plants, impacting fish habitat preferences
Spiny Waterflea

- Predatory zooplankton that consumes native zooplankton
 - Reduce prey for larval fish, declines in WAE and YEP in MN lakes
- Clog fishing equipment
- Long spines and tails make them poor prey items
Actions by the Game, Fish and Parks
2020 Authorities

• Legislative bill (HB 1033) gives GFP the authority to:
 • Prohibit movement/possession of AIS
 • Require boaters to complete the following before launching:
 • Clean watercraft of all AIS, plants, or mud
 • Drain all water by removing plugs, running pumps, and expunging water
 • Dry watercraft when possible
 • Require watercraft to stop at inspection stations
 • Require decontaminations, when necessary
 • Can detain a watercraft until decontamination is complete

• Violations are primarily Class 2 misdemeanors
 • Second violation within a year is a Class 1 misdemeanor
Other AIS Regulations

- 41:10:04:05 - A person may not transport fish or aquatic bait in water obtained from a lake, river or stream except while in a boat ramp parking area.

- 41:10:04:06 – Lists containment waters
 - Lewis and Clark, Francis Case, Sharpe, McCook, Yankton, Missouri River from Sioux City to Oahe Dam, and ZM/QM infested waters outside SD

- 41:10:04:07 – Power to create Local Boat Registries

- 41:10:04:08 – Watercraft retaining a gallon or more after plugs have been pulled must undergo a decontamination

- 41:10:04:08 – Watercraft moored in a containment water for 3 or more consecutive days must undergo a decontamination
State AIS Management Plan

- Statewide Strategic Plan to Guide AIS activities in SD
- Coordinated by SD Game, Fish & Parks, but not only a GFP plan.
AIS Control

• Zebra Mussel Monitoring:
 • Hester-Dendy Plate Samplers
 • Dock/Structure inspection
 • Citizen PVC Dock Samplers
 • Veliger sampling

• Bigheaded Carp Monitoring:
 • Detection and population dynamics monitoring
 • Potential movement study in the James River - 2021

• Plant Monitoring:
 • Curlyleaf Pondweed surveys
 • Select chemical treatments
AIS Prevention & Regulation

- Boat ramp signs
- Education events
- SD Least Wanted Campaign
 - Started 2012, re-launched 2015
 - “One-stop-shop” for AIS in SD
 - Media Gallery
 - Species Info
 - Maps
 - Citizen Monitoring
 - #sdleastwanted
- Fishing Handbook
South Dakota WID Program

• Inspection Stations Statewide
 • May through August
 • Two-person teams equipped with decontamination units
 • Multiple locations in each fisheries management area
• Goal is to increase compliance with existing regulations
WID Process

• Risk assessment (1-2 min)
• High risk inspection (5 min)
• Decontamination
 • Time is variable
 • Depends on type
 • Standing water vs. Full
Initial Inspection

• Risk assessment
 • Out of state/infested in past 30 days
 • Dirty/crusty/slimy
 • Standing water/ballast tanks
 • Complex (multiple motors, interior compartments)

• If 2 or more risks occur, then conduct a more thorough, high-risk inspection

https://www.threeriversparks.org/page/aquatic-invasive-species
When is a Decontamination Required?

- Watercraft was in contact with an infested water for 3 or more continuous days
- If water cannot be completely drained (ballast tanks) after leaving a containment water
- If there is standing water in the watercraft
- Observed AIS onboard
Types of Decontamination

1. Plant Decontamination
 • Simple – Manually remove all vegetation from trailer
Types of Decontamination

1. Plant Decontamination
2. Standing Water Decontamination
 • Soak up water with sponge, chamois, or towel
 • Low-pressure rinse with 120°F water for 2 minutes
Types of Decontamination

1. Plant Decontamination
2. Standing Water Decontamination
3. Ballast Tank Decontamination
 • Only needed if they come from an infested source
 • Low pressure flush with 120°F water for 5 min
Types of Decontamination

1. Plant Decontamination
2. Standing Water Decontamination
3. Ballast Tank Decontamination
4. Full Decontamination
 • If zebra mussels are observed on the boat or trailer
 • 140°F water for 10 seconds on exterior surfaces, motor flush
 • 120°F water for 2+ minutes on internal compartments
What’s the message?

• CLEAN. DRAIN. DRY. Every time.
• No mud, plants, or water moved among waterbodies
Before Leaving & Before Launching...

Inspect Everything!

Dock Lines Storage Compartments Anchor Live Wells Bilge

Prop

Through-Hull Fittings Trailer Hull Axle Rollers/Bunks Gimble Area Motor Intakes

Zebra Zapper
Boat Terminology

- Bait Well
- Ballast and Ballast Tank
- Bilge, Bilge Plug, & Pump
- Gimbal
- Live Well
- Pitot Tubes
- Transom
- Trim Tabs
Marine Propulsion Systems

1. Trolling Motors
 - Electric
 - Gasoline

2. Inboard/Outboard Engines (I/O)

3. Outboard Motors

4. Inboard Engines

5. Jet Engines
Watercraft Risk Assessment
Categories of Boats

• Hand-launched, non-motorized watercraft
 – Inspections may, or may not, be required pending state or local laws and regulations

• Simple Boats
 – Need to inspect

• Complex Boats
 – Need to inspect

➢ VERY COMPLEX
Hand Launched

Kayak
Canoe
Raft
Windsurfer and
Paddle Boards
Sailboard
Float Tubes
Inner Tubes
Hand-Launched:

- No Trailer
- No Compartments
- No Motors or Engines
- Typically Cleaned, Drained & Dried
A Simple Boat

- Open Hull
- No Containers or Compartments
- Single Outboard or Motor
A Complex Boat

- Closed Hull
 OR
- One or More Interior Compartments
 OR
- More Than One Motor or Engine
VERY Complex

- Multiple Intakes
- Multiple Devices
- Multiple Engines
Watercraft Risk

<table>
<thead>
<tr>
<th>Watercraft Type</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Boats, Cabin Cruisers</td>
<td>Very High Biological Risk</td>
</tr>
<tr>
<td>Ski Boats and Wakeboard Boats with Ballast Tanks</td>
<td></td>
</tr>
<tr>
<td>Large Open Boats, Sailboats, Ski Boats and Wakeboard Boats with no ballast tanks, Personal Watercraft (PWC)</td>
<td>Medium to High Biological Risk</td>
</tr>
<tr>
<td>Simple Boats - Open Hull, Single Motors, No Interior Containers or Compartments</td>
<td>Low Biological Risk</td>
</tr>
<tr>
<td>Hand-launched, Non-Motorized Watercraft: Canoe, Kayak, Windsurfer Board, Paddle Board, Sail Board, Belly Boats, Rafts, Float Tubes and Inner Tubes</td>
<td>Very Low Biological Risk</td>
</tr>
</tbody>
</table>
Boat Anatomy

Where Do We Look?
H.E.A.D.

• H – Hull and Trailer – Exterior
• E – Engine or Motor – Transom
• A – Anchor, Anchor Rope and Equipment
• D – Drain Interior Compartments
The Hull!
Through Hull Fittings

Use a flashlight!
Trailers - Rollers

- Axle(s)
- Spring Hangers
- Rollers
- Light Brackets
Trailers – Carpeted Bunks

- Bunks & Brackets
- Hollow Frame Parts
- Frame Members
- Fender Brackets
Intakes
Gimbal Unit
Anti-Cavitation Plates

W. Baldwin 8-07
Fasteners – Nuts & Bolts
Prop Shaft
Prop Shaft Support
Trim Tabs, Hinges, Top & Bottom
Transducers & Pitot Tubes
Anchors and Rope/Chain

Anchors get checked on every inspection in & out!
Equipment and Storage Lockers
Tanks or Bladders
Sailboats

- Hull and Trailer
- Centerboard Box
- Motors
- Fittings
- Rudder
- Keel
What Does Decon Consist Of?

- **Hot Water to Kill**
 - No bleaches, soaps or chemicals
- **Low pressure to flush**
- **High pressure to remove from the exterior**
- **Based on Scientific Research**
 - 140°F rinse for 10 seconds kills adult mussels
 - *Morse, 2009*
 - 95°F kills veligers
 - *Craft and Myrick, 2011*
SOP’s for Decon Unit

• Check Fluid levels
 – Gas, Diesel, Oil
 – Water if resource tank on MDU
• Roll out the hose – the whole way!
• Connect the water supply
• Pull the choke, and turn the key
 – Squeeze Trigger
Operating Instructions

• Operation
 – Start with squeezing the trigger on the gun
 – Stop by squeezing trigger on the gun after cool down

• Burner
 – Turn on, squeeze trigger
 – Ck Temperature at the gun
 – Bypass Mode
 – Cool down before shutting off
High Pressure – Hot Water!!

- 3,000 psi from the trigger back to the machine – backpressure
- Trigger activates the backpressure through orifice of the nozzle.
- 40 degree tip on nozzle – White Tip
- Water travels thru at speed of 400 miles p/hour
 - Atomized to small droplets
 - 12” standoff, white nozzle = 1lb p/sq. inch
 - 6” INCREASES TO 4 lbs. force
For Example
Standard Decontamination Protocols

- **Interior Compartments** = 120 F, low pressure
- **Ballast Tanks** = 120 F, low pressure
- **Engines/Motors** = 140 F, low pressure
- Constantly checking temperatures of water
 - Also watch temperature gauge for engines at the helm
Standing Water Decontamination

- Most common
- Kill veligers and other AIS in standing water
- Targeted procedure
- Remove or force standing water out of the watercraft and replace it with sterile hot water
- Veligers can live in standing water for 24 days
Triggers for Standing Water Decontamination

• Watercraft has been in positive or infested water in last 30 days, was not decontaminated upon exit, and has ANY standing water present
 – Should be done for ballast tanks, I/O and Inboards leaving containment waters intended for another location next.

• Watercraft is unable to be fully drained and cannot be sponged, toweled, or pumped out
Standing Water Decontamination

- Engine Flushes
- Ballast Tanks
- Motor, Live or Bait Wells
Standing Water Decontamination

Make Sure engine is completely lowered

Different Types of Muffs and Attachments Recommended
Engine Flush

- Place muffs on intake openings completely
- Start MDU (Mobile Decon Unit)
- Start Water by engaging Trigger
 - Ck that muffs still secure
- Have eye contact with Watercraft Operator
 - Stand Clear of the propeller
 - Ask Operator to start engine in NEUTRAL
 - Watch to make sure engine is uptaking water!
 - Allow Engine to warm up, then Fire the Burner
 - Exit Temperature measured at Discharge 140 Degrees
Inboard Engine Flush

• Locate Intake on the bottom of hull
• Attach hose to fake-a-lake attachment
• Start MDU
 – Start Water
 – Ck attachment
 – Eye contact
 • Stand Clear of Prop
 • Start Engine
 • Ck Exit Temp at discharge - 140F
Bilge Flush

Flushing the bilge –
Soak up Contaminants
LOW Pressure
- 4-5 gallons of 120F water,
- have owner remove plug
- flush until exit water reaches 120F

Bilge pump can/will come on when water reaches float –
Hot water discharged – careful of temperatures for pump motor
Ballast Tanks

- Pumps - multiple
 - high temperatures
- Fill & Drain repeatedly
Ballast Tanks

• Options for Flushing Ballast Tanks
 Back Flush by going thru Overflow or Discharge through hull port
 • Identify Outlet
 • Be Aware of one way Valve
 – Water will splash back

• Tow Boat Ballast intakes can reach 7-9 GPM
 – Pumps will be rated for this amount of Flow
 – Your MDU may be rated for only 5 GPM
Questions?